

Journal of Photochemistry and Photobiology A: Chemistry 86 (1995) 15-25 Journal of
PHOTOCHEMISTRY
AND
PHOTOBIOLOGY
ACCHEMISTRY

Photolysis of CF₃O₂CF₃ in the presence of O₃ in oxygen: kinetic study of the reactions of CF₃O and CF₃O₂ radicals with O₃

Richard Meller and Geert K. Moortgat *

Max Planck-Institut für Chemie, Air Chemistry Department, PO Box 3060, D-55020 Mainz, Germany

Received 23 May 1994; accepted 23 August 1994

Abstract

Mixtures of $CF_3O_2CF_3$ (0.65-6.1×10¹⁵ molecule cm⁻³) and O_3 (1.3×10¹⁵ molecule cm⁻³) in 760 Torr O_2 were photolysed at 254 nm in a static system at 295 K. CF_2O and $CF_3O_3CF_3$ were identified as products by FTIR spectroscopy. From these product concentrations, the observed O_3 decay (UV) and the measured photolysis rate of $CF_3O_2CF_3$, a mechanism was established and the rate constants $k(CF_3O+O_3)=(2.8\pm1)\times10^{-15}$ cm³ molecule⁻¹ s⁻¹ and $k(CF_3O_2+O_3)=(9\pm3)\times10^{-16}$ cm³ molecule⁻¹ s⁻¹ were calculated. For this purpose two different methods were employed: one assuming steady state conditions and another using of computer simulations of the O_3 decay. The results are discussed and compared with other investigations. UV absorption spectra of $CF_3O_2CF_3$ and $CF_3O_3CF_3$ are also presented.

Keywords: CF₃O; CF₃O₂; CF₃O₂CF₃; CF₃O₃CF₃

1. Introduction

Recent mechanistic investigations of the degradation of the hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) HFC-134a, HFC-125, HCFC-123 and HCFC-124 have established that CF₃ radicals are generated from their OH- or Cl-initiated photooxidations [1–3]. In the atmosphere, CF₃ radicals react readily with O₂ to give CF₃O₂ radicals, which in turn react with NO to form CF₃O radicals. The atmospheric fate of the CF₃O radicals is however not fully understood. It has been shown that they may react with NO, NO₂, CH₄ and other organic compounds and H₂O [4–13]. In addition it has been speculated that CF₃O and CF₃O₂ may be involved in the destruction of O₃ via

$$CF_3O + O_3 \longrightarrow CF_3O_2 + O_2$$
 (1)

$$CF_3O_2 + O_3 \longrightarrow CF_3O + 2O_2$$
 (2)

Recently Biggs et al. [14] reported a rate constant for reaction (1) $k_1 = 1 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, a value which is sufficiently rapid to play an important role with respect to the stratospheric ozone depletion. During the course of this study, several upper limits for k_1 and k_2 have been reported, ranging for k_1 from 1×10^{-13} to 2×10^{-15} cm³ molecule⁻¹ s⁻¹ and for k_2 from 1×10^{-14} to 3×10^{-15} cm³ molecule⁻¹ s⁻¹ [15-20].

Although some of these previous studies have shown that CF_3O reacts with O_3 , there has been no direct evidence of the formation of the product CF_3O_2 in reaction (1).

In this paper we present results on a kinetic study of reactions (1) and (2) and give evidence that reaction (1) occurs to produce CF_3O_2 radicals. We use the UV photolysis of $CF_3O_2CF_3$ as source of CF_3O radicals. While photolysing mixtures of $CF_3O_2CF_3/O_3/O_2$ at 254 nm, the decay of O_3 and the formation of products (CF_2O) and $CF_3O_3CF_3$ were monitored. Analysis of these data required information on the UV-spectra of $CF_3O_2CF_3$ and $CF_3O_3CF_3$, infrared reference spectra of the products CF_2O and $CF_3O_3CF_3$, and the photolysis rate of $CF_3O_2CF_3$. The photolysis rate was determined by irradiating $CF_3O_2CF_3/C_2H_6/O_2$ mixtures and monitoring product formation with IR-spectroscopy.

2. Experimental

UV spectra of CF₃O₂CF₃ and CF₃O₃CF₃ were measured at 298 K in a temperature controlled quartz cell (pathlength = 0.63 m) in the wavelength range between 200–265 nm and 200–312 nm, respectively, using a monochromator (HRS 2, Jobin Yvon)/diode array (Model 1412, EG&G) arrangement. The apparatus and experimental techniques employed are described in

^{*} Corresponding author.

detail by Nölle et al. [21] and by Maric et al. [22]. A single measurement by the diode array spectrometer covered a wavelength range of 70 nm when a grating of 600 lines mm⁻¹ was used. The pressures of both compounds were measured with absolute pressure gauges (Baratron) and varied between 0.5 and 10 Torr.

All photolysis experiments and product studies were further carried out at 295 K in a long path quartz cell (44.2 l) equipped with two sets of White optics for spectral measurements in the infrared region (43.4 m) and in the ultraviolet region (9.82 m). Infrared spectra at 1 cm⁻¹ resolution (430–3950 cm⁻¹) were measured with a Bomem DA8-FTIR spectrometer coupled to a cooled (5 K) CuGe detector. The UV-absorption of O₃ at 280 and 300 nm was monitored using a double-monochromator (HRS 225, Jobin Yvon)/photomultiplier (Hamamatsu) arrangement, as described previously by Raber and Moortgat [23]. Irradiation of the reaction mixtures was performed with UV-lamps (Philips) at 254 nm.

 $\text{CF}_3\text{O}_2\text{CF}_3$ (Fluorochem, >97%) and ethane (Linde, 3.5) were used without purification; CF_2O (PCR, >97%) was distilled twice before use. $\text{CF}_3\text{O}_3\text{CF}_3$ was prepared as described by Anderson and Fox [24]. The purity of $\text{CF}_3\text{O}_3\text{CF}_3$ was checked by IR-spectroscopy and 5% of $\text{CF}_3\text{O}_2\text{CF}_3$ was found to be the only impurity. O_3 was generated by irradiating oxygen (Linde, 5.0) with the light emitted from a low-pressure mercury lamp before entering the photolysis cell.

3. Results

3.1. UV absorption spectra of $CF_3O_2CF_3$ and $CF_3O_3CF_3$

The UV absorption spectra of CF₃O₂CF₃ and CF₃O₃CF₃ are shown in Fig. 1 and the corresponding absorption cross-sections averaged over 1 nm intervals are presented in Table 1. The spectrum of CF₃O₂CF₃ shows a broad absorption band originating near 265 nm and increasing at lower wavelengths; similarly the spectrum of CF₃O₃CF₃ also shows a broad absorption but extends to 312 nm. The detection limit for the absorption cross-sections is of the order of 5×10^{-22} cm² molecule⁻¹ under our experimental conditions described above. For the spectrum of CF₃O₃CF₃ the 5% impurity of CF₃O₂CF₃ was taken into account and subtracted from the measured absorption. The errors of the reported cross-sections are within 3% for CF₃O₂CF₃ and 5% for CF₃O₃CF₃, based on standard deviation of all measured absorptions.

3.2. Determination of the photolysis rate of $CF_3O_2CF_3$

It is anticipated that the photolysis of CF₃O₂CF₃ at 254 nm results in the formation of two CF₃O radicals according to reaction (3a)

$$CF_3O_2CF_3 + h\nu \longrightarrow 2CF_3O$$
 (3a)

The possibility of the occurrence of the other pathways (3b) and (3c)

$$CF_3O_2CF_3 + h\nu \longrightarrow CF_3 + CF_3O_2$$
 (3b)

$$CF_3O_2CF_3 + h\nu \longrightarrow 2CF_3 + O_2$$
 (3c)

was investigated by photolysing CF₃O₂CF₃ in the presence of O₂. Since no CF₃O₃CF₃ was observed, it was concluded that neither CF₃ nor CF₃O₂ radicals were formed at 254 nm and that reaction path (3a) is the unique photolysis product channel.

In order to measure the photolysis rate of CF₃O₂CF₃, it was necessary to add a scavenger to prevent the recombination of CF₃O radicals.

$$CF_3O + CF_3O \longrightarrow CF_3O_2CF_3$$
 (4)

For this purpose an excess of C_2H_6 was added; it is known that CF_3O radicals react effectively with C_2H_6 ($k_5=1.2\times10^{-12}$ cm³ molecule⁻¹ s⁻¹ [10]) to form CF_3OH which is unstable and decomposes to CF_2O and HF.

$$CF_3O + C_2H_6 \longrightarrow CF_3OH + C_2H_5 \tag{5}$$

$$CF_3OH \longrightarrow CF_2O + HF$$
 (6)

Four photolysis experiments were performed with initial CF₃O₂CF₃ concentrations ranging from 7.8×10^{14} up to 9.7×10^{14} molecule cm⁻³ mixed with 2.5×10^{15} molecule cm⁻³ C₂H₆ in 760 Torr air. The photolysis duration was varied between 3600 and 6300 seconds. The observed products of the UV photolysis of CF₃O₂CF₃/C₂H₆/air mixtures measured by FTIR spectroscopy are CF₂O, CH₃CHO, CO, CO₂ and HF. Due to its instability the intermediate CF₃OH [13,25,26] reaches only very low concentrations, and therefore could not be detected. The concentration of the CF₂O formed could be easily determined by its infrared absorption band at 1929 cm⁻¹, giving quantitative information about the amount CF₃O₂CF₃ photolysed.

The results are presented in Fig. 2, where the measured and fitted CF₂O concentrations are displayed. The initial delay in the formation of CF₂O can be attributed to the formation of CF₃OH via reaction (5) followed by reaction (6) to reach a steady state concentration. The CF₂O yield was calculated using a computer program, whereby only reactions (3a), (5) and (6) were considered. The values $k_3 = (2.08 \pm 0.04)$ $\times 10^{-5}$ s⁻¹ and $k_6 = (1.5 \pm 0.3) \times 10^{-3}$ s⁻¹ were obtained from the experimental data. Our calculated lifetime of CF₃OH at 295 K of 11±3 minutes agrees well with the value published by Chen et al. [5] at 297 ± 2 K, where $\tau(CF_3OH) = 12 \pm 3$ minutes. Wallington et al. [13,25] showed that the lifetime of CF₃OH is dependent on the history of the vessel, and is attributed to heterogeneous decomposition on the wall.

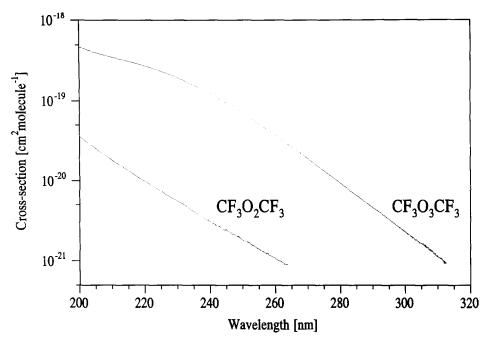


Fig. 1. UV absorption spectra of CF₃O₂CF₃ and CF₃O₃CF₃ in the range 200-312 nm.

Table 1 Absorption cross-sections of $CF_3O_3CF_3$ (Tri) and $CF_3O_2CF_3$ (Per) averaged over 1 nm intervals. The given wavelengths λ are the center of the interval and the given absorption cross-sections σ are in units of 10^{-20} cm² molecule⁻¹

λ	σ(Tri)	σ(Per)	λ	σ(Tri)	σ(Per)	λ	$\sigma({\rm Tri})$	λ	σ(Tri)
200	46.9	3.61	232	18.0	0.501	264	2.86	296	0.302
201	45.5	3.37	233	17.2	0.462	265	2.67	297	0.281
202	44.2	3.13	234	16.5	0.433	266	2.50	298	0.262
203	42.8	2.92	235	15.7	0.408	267	2.33	299	0.244
204	41.4	2.73	236	15.0	0.380	268	2.17	300	0.228
205	40.2	2.53	237	14.3	0.361	269	2.03	301	0.213
206	39.0	2.35	238	13.7	0.339	270	1.89	302	0.197
207	37.9	2.20	239	13.0	0.323	271	1.76	303	0.185
208	37.0	2.06	240	12.3	0.303	272	1.64	304	0.174
209	36.1	1.94	241	11.7	0.288	273	1.53	305	0.164
210	35.2	1.80	242	11.1	0.274	274	1.43	306	0.154
211	34.4	1.69	243	10.5	0.263	275	1.33	307	0.143
212	33.6	1.61	244	10.0	0.246	276	1.24	308	0.133
213	32.8	1.51	245	9.46	0.240	277	1.15	309	0.122
214	32.1	1.42	246	8.95	0.227	278	1.07	310	0.112
215	31.3	1.33	247	8.45	0.214	279	0.999	311	0.106
216	30.5	1.25	248	7.95	0.204	280	0.929	312	0.096
217	29.8	1.18	249	7.48	0.195	281	0.860		
218	29.0	1.10	250	7.04	0.183	282	0.800		
219	28.2	1.04	251	6.64	0.174	283	0.748		
220	27.4	0.983	252	6.25	0.166	284	0.699		
221	26.7	0.926	253	5.87	0.157	285	0.653		
222	25.9	0.869	254	5.52	0.147	286	0.608		
223	25.1	0.822	255	5.18	0.138	287	0.565		
224	24.3	0.778	256	4.86	0.132	288	0.526		
225	23.5	0.737	257	4.56	0.125	289	0.491		
226	22.7	0.693	258	4.26	0.119	290	0.458		
227	21.9	0.654	259	3.99	0.112	291	0.427		
228	21.1	0.614	260	3.73	0.107	292	0.400		
229	20.3	0.584	261	3.51	0.101	293	0.373		
230	19.5	0.555	262	3.28	0.096	294	0.347		
231	18.8	0.525	263	3.07	0.091	295	0.325		

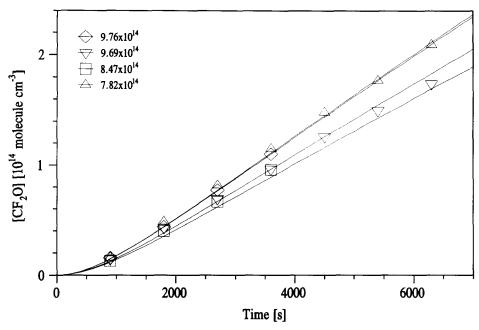


Fig. 2. Measured and fitted CF₂O concentration for the determination of the photolysis rate of CF₃O₂CF₃. Initial concentration of CF₃O₂CF₃ are given in units of molecule cm⁻³.

Additional actinometric studies were performed at 295 K and at a total pressure of 760 Torr to verify the photolysis rate of $CF_3O_2CF_3$. For this purpose CF_3COCl was photolysed at 254 nm and its decay measured as $k_{\rm act} = 9.00 \times 10^{-4} \ {\rm s}^{-1}$. Using the available data for $\sigma_{254}(CF_3COCl) = 6.86 \times 10^{-20} \ {\rm cm}^2$ molecule⁻¹ [27], $\Phi_{254}(CF_3COCl) = 1$ and $\sigma_{254}(CF_3O_2CF_3) = 1.50 \times 10^{-21} \ {\rm cm}^2$ molecule⁻¹, a value of $k_3 = 1.98 \times 10^{-5} \ {\rm s}^{-1}$ is calculated assuming a quantum yield $\Phi_{254}(CF_3O_2CF_3)$ of unity. This could be instead interpreted that k_3 is identical to that obtained above, when $\Phi_{254}(CF_3O_2CF_3)$ is set to 0.95 ± 0.06 .

3.3. Photolysis of $CF_3O_2CF_3$ in the presence of O_3

 $CF_3O_2CF_3$ (0.65-6.1×10¹⁵ molecule cm⁻³) was irradiated for 900 seconds in the presence of O_3 (1.3×10¹⁵ molecule cm⁻³) in 760 Torr O₂. IR spectra were taken before and after the irradiation. O₃ concentrations were continuously monitored by UV absorption of light from a deuterium lamp which traversed the photolysis cell. In Fig. 3 a typical decay curve is displayed. During phase A, a mixture O₃/CF₃O₂CF₃/O₂ was admitted into the cell and left to reach equilibrium for about 10 minutes (phase B). Then the mixture was irradiated for 900 seconds, and a pronounced decay of O₃ was observed during phase C. The lamps were shut off in phase D and the decay of O₃ was further followed before pumping off the mixture. Initial concentration of the reactants, product concentration after 900 seconds irradiation and the observed O_3 decay $(k_{\rm obs})$ are summarized in Table 2.

In addition, "blank" experiments were performed before and after each run, in which O_3/O_2 mixtures were irradiated under the same experimental conditions but in the absence of $CF_3O_2CF_3$. During these blank runs O_3 was removed at a slower rate then in the presence of $CF_3O_2CF_3$. For initial O_3 concentration $[O_3]_0 = 1.21 - 1.37 \times 10^{15}$ molecule cm⁻³ a value of $k_7 = 5.0 \pm 0.2 \times 10^{-5}$ s⁻¹ was measured. It is assumed that the observed O_3 removal rate during the blank experiments includes photolytic as well as wall loss processes $(k_7 = k_{7a} + k_{7b})$.

$$O_3 + h\nu \longrightarrow \text{products}$$
 (7a)

$$O_3 + wall \longrightarrow products$$
 (7b)

3.4. Product analysis

Infrared absorption bands of several products were observed in the range 430–2100 cm⁻¹ which were ascribed to CF₂O (774, 930–990 and 1929 cm⁻¹) and CF₃O₃CF₃ (580, 772 and 890–910 cm⁻¹). No analysis could be performed in the range 1100–1400 cm⁻¹ because of the strong absorption of the reactant CF₃O₂CF₃. There was no evidence of other product formation. Quantitative analysis was carried out by comparing the 1929 cm⁻¹ absorption band of CF₂O and the 772 cm⁻¹ absorption band of CF₃O₃CF₃ to reference spectra obtained in the same cell. The yields of both products after 900 seconds irradiation are also displayed in Table 2.

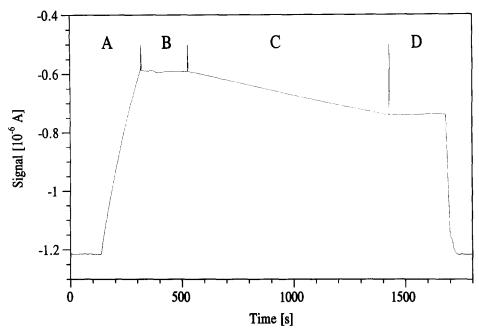


Fig. 3. Trace of the O₃ absorption during a typical photolysis experiment of a CF₃O₂CF₃/O₃ mixture in 760 Torr O₂.

Table 2
Photolysis of CF₃O₂CF₃/O₃O₂ mixtures: experimental conditions and observations

Exp.	[O ₃] ₀ a	[CF ₃ O ₂ CF ₃] ₀ *	[CF ₃ O ₃ CF ₃] ₉₀₀ b	[CF ₂ O] ₉₀₀ b	[CF ₃ O ₂ CF ₃] _{rec} c	$k_{ m obs}^{d}$
A	1.33×10 ¹⁵	0.65×10 ¹⁵	0.3×10 ¹³	0.5×10 ¹³	0.15×10^{13}	0.96×10 ⁻⁴
В	1.29×10^{15}	1.73×10^{15}	0.9×10^{13}	$0.8-10^{13}$	0.55×10^{13}	1.13×10^{-4}
C	1.31×10^{15}	1.67×10^{15}	1.0×10^{13}	0.8×10^{13}	0.40×10^{13}	1.03×10^{-4}
D	1.24×10^{15}	2.86×10^{15}	1.7×10^{13}	1.1×10^{13}	0.80×10^{13}	1.45×10^{-4}
E	1.33×10^{15}	4.65×10^{15}	2.6×10^{13}	1.5×10^{13}	1.65×10^{13}	1.82×10^{-4}
F	1.33×10^{15}	6.09×10^{15}	3.6×10^{13}	1.7×10^{13}	2.10×10^{13}	2.18×10^{-4}
G	1.33×10^{15}	3.70×10^{15}	2.3×10^{13}	1.3×10^{13}	1.00×10^{13}	1.46×10 ⁻⁴

^a [O₃]₀ and [CF₃O₂CF₃]₀ represent the initial concentrations of O₃ and CF₃O₂CF₃, respectively.

3.5. Mechanistic considerations

From the analysis of the observed products, a reaction mechanism for the photolysis of $CF_3O_2CF_3/O_3/O_2$ mixtures is suggested and is displayed in Table 3. The observation of the product $CF_3O_3CF_3$, only when O_3 is present, is a confirmation that reaction (1) (formation of CF_3O_2) is taking place. Since no $CF_3O_3CF_3$ is formed in the absence of O_3 , the possibility of formation of CF_3O_2 via reaction (3b) can be eliminated. It is known [28–30] that CF_3O and CF_3O_2 combine to form a unique product $CF_3O_3CF_3$ according to reaction (8).

$$CF_3O + CF_3O_2 \longrightarrow CF_3O_3CF_3$$
 (8)

CF₃O₂ radicals may also self-react via reaction (9), or react with O₃ via reaction (2). The product CF₂O

arises from the decomposition of the CF₃O radical (reaction (10)).

$$CF_3O_2 + CF_3O_2 \longrightarrow CF_3O + CF_3O + O_2 \tag{9}$$

$$CF_3O + wall \longrightarrow CF_2O$$
 (10)

The mechanism of CF_2O formation is still not known, but its first order decay k_{10} could be obtained from the analysis of these experiments. Since $CF_3O_3CF_3$ absorbs at 254 nm, it is expected to decompose by irradiation according to reaction (11).

$$CF_3O_3CF_3 + h\nu \longrightarrow CF_3O_2 + CF_3O$$
 (11)

The photolysis rate was calculated from its absorption spectrum, assuming a quantum yield of unity.

^b [CF₃O₃CF₃]₉₀₀ and [CF₂O]₉₀₀ represent the observed concentrations of CF₃O₃CF₃ and CF₂O after 900 seconds irradiation.

 $^{^{}c}$ [CF₃O₂CF₃]_{rec} represents the concentration of CF₃O₂CF₃ formed via reaction (4) and is calculated from [CF₃O₂CF₃]_{rec} = [CF₃O₂CF₃]₀ {1 - exp(-k₃t)} - [CF₃O₃CF₃]₉₀₀ - 0.5[CF₂O]₉₀₀).

 $^{^{\}rm d}k_{\rm obs}$ is the observed first order decay rate of O_3 .

The concentrations are given in molecule cm⁻³, the unit of k_{obs} is s⁻¹.

Table 3
Reaction scheme used in the computer simulation of the CF₃O₂CF₃/O₃O₂ photolysis system

Reaction	Rate constant Ref.			
$CF_3O_2CF_3 + h\nu \rightarrow CF_3O + CF_3O$	1.2×10 ⁻⁵ a	this work	(3a)	
$CF_3O + O_3 \rightarrow CF_3O_2 + O_2$	varied	this work	(1)	
$CF_3O_2+O_3 \rightarrow CF_3O+O_2+O_2$	varied	this work	(2)	
$CF_3O + CF_3O \rightarrow CF_3O_2CF_3$	2.1×10^{-11}	[31]	(4)	
$CF_3O + CF_3O_2 \rightarrow CF_3O_3CF_3$	2.1×10^{-11}	see text	(8)	
$CF_3O_2 + CF_3O_2 \rightarrow CF_3O + CF_3O + O_2$	1.8×10^{-12}	[29]	(9)	
$CF_3O + wall \rightarrow CF_2O$	0.58	this work	(10)	
$CF_3O_3CF_3 + h\nu \rightarrow CF_3O_2 + CF_3O$	4.5×10^{-4}	this work	(11)	
$O_3 \rightarrow products/wall$	5.0×10^{-5}	this work	(7)	

a Only 5 lamps were used, instead of 8 lamps during the determination of the photolysis rate.

3.6. Kinetic considerations

3.6.1. Steady state analysis

The rate constants k_1 and k_2 can be obtained by considering steady state conditions of both CF₃O and CF₃O₂ radicals during the photolysis of CF₃O₂CF₃/O₃/O₂ mixtures. This assumption is valid since the consumption of CF₃O₂CF₃ is at the most 2% and the O₃ concentration, which controls the ratio of the radical concentrations [CF₃O]/[CF₃O₂], varies its consumption between 8% and 18% in the various experiments.

The rate of recombination of CF₃O radicals forming CF₃O₂CF₃ is given by Eq. (12).

$$\Delta[\mathrm{CF_3O_2\mathrm{CF_3}}]_{\mathrm{rec}}/\Delta t = k_4[\mathrm{CF_3O}]^2 \tag{12}$$

 k_4 is reported by Batt and Walsh [31] as 2.1×10^{-11} cm³ molecule⁻¹ s⁻¹. The number of CF₃O₂CF₃ molecules formed by the recombination of CF₃O radicals, [CF₃O₂CF₃]_{rec}, can be calculated from the photolysis rate of CF₃O₂CF₃, k_3 and the observed product concentrations of CF₃O₃CF₃ and CF₂O after 900 s photolysis.

$$[CF_3O_2CF_3]_{rec} = [CF_3O_2CF_3]_0(1 - \exp(-k_3t))$$
$$-[CF_3O_3CF_3]_{900} - 0.5[CF_2O]_{900}$$
(13)

The rate of formation of $CF_3O_3CF_3$ can be used in the same way to calculate the steady state concentration of CF_3O_2 .

$$\Delta[CF_3O_3CF_3]/\Delta t = k_8[CF_3O][CF_3O_2]$$
 (14)

Although the value of k_8 is not known, it is assumed that k_8 has the same value as k_4 , because of the structural similarity of both radicals (see Section 4).

Under steady state assumption (and neglecting photolysis of CF₃O₃CF₃) it can be written that

$$d[CF_3O_2]/dt = k_1[CF_3O][O_3] - k_2[CF_3O_2][O_3] - k_8[CF_3O][CF_3O_2] - 2k_9[CF_3O_2]^2 = 0$$
 (15)

The observed decay of O_3 ($\Delta[O_3]/\Delta t = k_{obs}$ [O₃]) is due to its reactions with CF₃O and CF₃O₂ radicals and to the photolytical removal and wall loss processes (reactions (7a) and (7b)).

$$k_{\text{obs}} = (k_{7a} + k_{7b}) + k_1[\text{CF}_3\text{O}] + k_2[\text{CF}_3\text{O}_2]$$
 (16)

Combining Eqs. (15) and (16) yields:

$$k_{1}' = \{ (k_{\text{obs}} - k_{7} + (k_{8}[\text{CF}_{3}\text{O}][\text{CF}_{3}\text{O}_{2}] + 2k_{9}[\text{CF}_{3}\text{O}_{2}]^{2})/[\text{O}_{3}] \} \} / 2 = k_{1}[\text{CF}_{3}\text{O}]$$
(17)

and

$$k_{2}' = \{ (k_{obs} - k_7 - (k_8[CF_3O][CF_3O_2] + 2k_9[CF_3O_2]^2)/[O_3] \} \} / 2 = k_2[CF_3O_2]$$
(18)

Plotting k_1' (Eq. (17)) versus [CF₃O] yields k_1 from the slope. Similarly k_2 is obtained from the slope of the plot of k_2' (Eq. (18)) versus [CF₃O₂]. These plots are presented in Figs. 4 and 5. The steady state concentrations of CF₃O and CF₃O₂ are calculated from (Eq. (12)) and (Eq. (14)), respectively. The values deduced from the slopes are: $k_1 = (2.8 \pm 0.2) \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ and $k_2 = (9 \pm 1) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹.

3.6.2. Computer simulations

In order to establish the rate constants for reactions (1) and (2) a set of computer simulations using the mechanism displayed in Table 3 were also carried out. The observed O_3 decay during the photolysis of $CF_3O_2CF_3/O_3/O_2$ mixtures was fitted for different ratios k_1/k_2 ranging from ∞ to 0.01. The results, as best fits for all experiments, are summarized in Table 4. If k_2 is neglected ($k_2=0$) a value of $k_1=8.6\times10^{-15}$ cm³ molecule⁻¹ s⁻¹ is obtained. Upon variation of k_1/k_2 , the value of k_1 decreases to the low 10^{-15} cm³ molecule⁻¹ s⁻¹. These values represent the upper and lower limit of k_1 obtained if only O_3 decay is considered. With the calculated k_1 and k_2 (as tabulated in Table 4) the

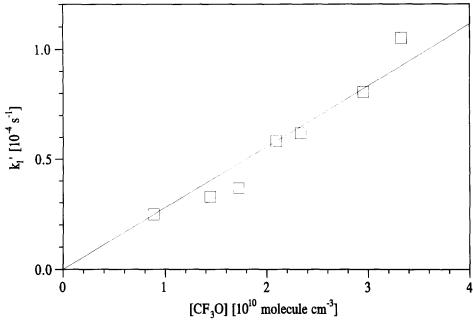


Fig. 4. $k_{1'}$ versus CF₃O-concentration (Eq. 17).

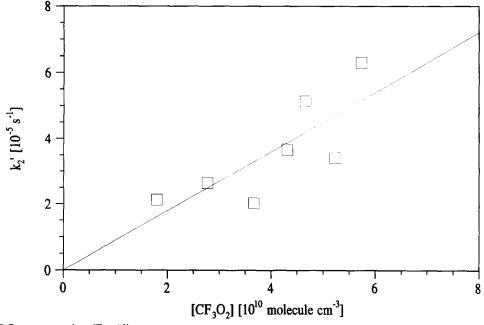


Fig. 5. $k_{2'}$ versus CF_3O_2 -concentration (Eq. 18).

expected concentrations of $CF_3O_3CF_3$ after 900 seconds irradiation ([$CF_3O_3CF_3$]₉₀₀) were calculated for all the conditions of the experiments listed in Table 2. The resulting calculated values of [$CF_3O_3CF_3$]₉₀₀, obtained upon variation of ratio k_1/k_2 from 10^{-2} to 10^4 , are plotted in Fig. 6. Also shown in Fig. 6 are the experimentally observed values for [$CF_3O_3CF_3$]₉₀₀ for each run. From Fig. 6 it is now possible to deduce the ratio $k_1/k_2 = 3.7 \pm 0.8$ which fits all our experimental observations.

A plot of the variation of the calculated k_1 versus k_1/k_2 is presented in Fig. 7, where the values of k_1 ,

listed in Table 4, are also displayed for each 10-fold increment of k_1/k_2 . A value $k_1 = (2.8 \pm 0.2) \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ is interpolated for $k_1/k_2 = 3.7$, and consequently a value $k_2 = (8 \pm 2) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ can be deduced.

4. Discussion

From both kinetic considerations given here, average values of $k_1 = (2.8 \pm 0.2) \times 10^{-15}$ and $k_2 = (9 \pm 2) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ are calculated. The accuracy of

Table 4 Rate coefficients k_1 and k_2 calculated from computer simulations of the O₃ decay in the photolysis of a CF₃O₂CF₃/O₃O₂ mixtures, upon variation of the ratio k_1/k_2

k_1/k_2	k_1 (cm ³ molecule ⁻¹ s ⁻¹)	k_2	
∞	8.62×10 ⁻¹⁵		
1000	8.42×10^{-15}	8.42×10^{-18}	
100	7.07×10^{-15}	7.07×10^{-17}	
10	3.96×10^{-15}	3.96×10^{-16}	
1	1.95×10^{-15}	1.95×10^{-15}	
0.1	1.44×10^{-15}	1.44×10^{-14}	
0.01	1.37×10^{-15}	1.37×10^{-13}	

both rate constants, k_1 and k_2 , depends on the exact knowledge of the proposed mechanism and the associated rate constants k_4 , k_8 , and k_9 . The accuracy is also dependent on the determination of the product concentrations, $CF_3O_3CF_3$ and CF_2O . The error associated with the measurements of the concentrations amounts to 1×10^{-12} molecule cm⁻³ for both CF_2O and $CF_3O_3CF_3$. Neither k_1 nor k_2 was affected within the cited error limits by these uncertainties as shown in Table 5.

The mechanism presented in Table 3 is based on known reactions of the involved species CF₃O and CF₃O₂, and their expected reaction products. The observed product CF₃O₃CF₃ is a direct confirmation of the formation of CF₃O₂ radicals in the photolysis of CF₃O₂CF₃/O₃/O₂ mixtures. Photolysis of CF₃O₂CF₃ followed by reaction (1) is the only plausible source of CF₃O₂ radicals. Another possible source, the reaction (19) was considered.

$$CF_3 + O_2 + M \longrightarrow CF_3O_2 + M$$
 (19)

As stated earlier, CF₃ radicals could have been generated in the photolysis of CF₃O₂CF₃ via reactions (3b) and (3c). The absence of the product CF₃O₃CF₃ in the photolysis of CF₃O₂CF₃/O₂ mixtures confirms that no CF₃ and consequently no CF₃O₂ are generated.

Another source of CF₃O₂ radicals might result from the reaction of CF₃O with O atoms generated in the photolysis of O₃ at 254 nm,

$$CF_3O + O \longrightarrow CF_3 + O_2$$
 (20)

followed by reaction (19). Although O_3 is photolysed 8000 times faster than $CF_3O_2CF_3$, the steady state concentration of O atoms is low ($\sim 1\times 10^9$ molecules cm⁻³) due to the presence of 760 Torr O_2 . Assuming a rate constant of $k_{20}=1\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, the production of CF_3O_2 from this additional source is calculated to be about 1% of the total amount of $CF_3O_3CF_3$ generated. It can therefore be concluded that the contribution of O atoms to the CF_3 generation is negligible under our experimental conditions.

The rate constant for the self-reaction of CF₃O radicals used here, $k_4 = 2.1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, which was deduced by Batt and Walsh [31] from previously reported pyrolysis studies of CF₃O₂CF₃, is preferred over the value derived by Kennedy and Levy [32] ($k_4 = 6.6 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹). The rate constant for the self-reaction of CF₃O₂ radicals, k_9 , was measured by Nielsen et al. [29] and Maricq and Szente [33]. Both groups obtained the same value $k_9 = 1.8 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. There is no direct measurement of the rate constant k_8 for the cross-

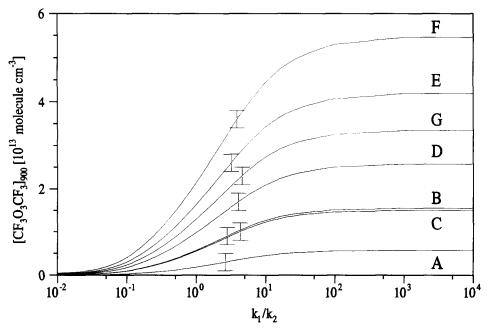


Fig. 6. Calculated values of $[CF_3O_3CF_3]_{900}$ obtained from computer simulations using k_1 and k_2 shown in Table 4 and the different experimental mixtures (A-G). The experimental yields $[CF_3O_3CF_3]_{900}$ with their estimated errors are also plotted for each run.

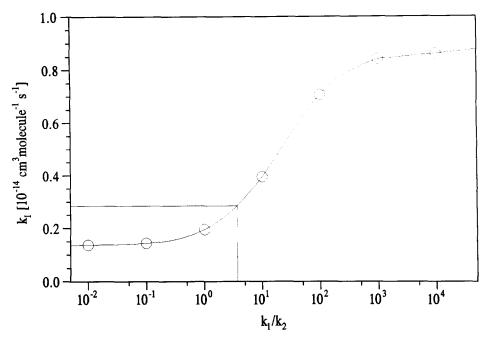


Fig. 7. Plot of variation of calculated k_1 versus k_1/k_2 . The k_1 values listed in Table 4 are displayed for each 10-fold increment of k_1/k_2 . The value $k_1 = (2.8 \pm 0.2)10^{-15}$ cm³ molecule⁻¹ s⁻¹ corresponds to the experimentally deduced ratio $k_1/k_2 = 3.7 \pm 0.8$.

Table 5 Sensitivity calculations for various rate constants used in the simulations of the O_3 decay and the $CF_3O_3CF_3$ product formation. The experiments are recalculated with one parameter varied. The units of k_1 and k_2 are 10^{-15} cm³ molecule⁻¹ s⁻¹

Parameter	Variation	$k_1 (+)$	$k_2 (+)$
		2.8	0.9
[CF ₃ O ₃ CF ₃] ₉₀₀	$\pm10\%$	2.5-3.0	0.8-1.1
[CF ₂ O] ₉₀₀	$\pm10\%$	2.7-2.9	0.8-0.9
k_3	$\pm10\%$	2.5-3.5	1.0-0.7
k ₇	$\pm 20\%$	2.7-3.0	0.8-1.0
k_9	$\pm100\%$	3.0-2.6	0.9-0.9
k ₁₁	$\pm100\%$	3.0-2.7	0.7-1.1
k ₄	mul/div 2	4.3-1.9	0.6-1.2
k ₈	mul/div 2	2.8-4.2	1.7-0.5

reaction between CF₃O and CF₃O₂ leading to CF₃O₃CF₃. In their studies of the CF₃O₂ self-reaction, Nielsen et al. [29] and Maricq and Szente [33] reported rate constants k_8 larger than for the reference reaction rate constant k_4 . Using the experimental results of Czarnowski and Schumacher [28] from the thermal decomposition of CF₃O₃CF₃, and the combined values for k_4 and k_9 used here, $k_8 = 2.1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ was calculated. This is exactly equal to k_4 used in this study. Using the combination rule of unlike radicals, [34,35]

$$k_{AB}/(k_{AA} \times k_{BB})^{1/2} = R$$
 (21)

where R is empirically deduced to be close to 2, it is possible to estimate the value k_{AB} from the knowledge of the self-reaction rate constants k_{AA} and k_{BB} . Applying this rule to CF₃O and CF₃O₂, where $k_{AA} = k_4$ and

 $k_{\rm BB} = k_9$, a somewhat smaller value $k_{\rm AB} = k_8 = 1.2 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ is calculated. Considering the limitation of such a generalized estimation, we have chosen to use $k_8 = k_4$ for the treatment of the data.

Sensitivity analysis were performed, in order to estimate the errors propagated by the uncertainties of the reaction rate coefficients. These sensitivity tests were performed by varying different rate constants within certain limits and calculating the values k_1 and k_2 . The results of these sensitivity tests are shown in Table 5. Minor effects (within error limits) on k_1 and k_2 are observed upon variation of k_3 , k_{11} , k_7 and k_9 . The effect of doubling or halving k_4 and k_8 on k_1 and k_2 is at most 50%. Even assuming the maximum uncertainty, the value reported here remains in the lower 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ range. Considering all possible statistical and systematic errors final values are $k_1 = (2.8 \pm 1) \times 10^{-15}$ cm^3 molecule -1 $k_2 = (9 \pm 3) \times 10^{-16}$ cm³ molecule⁻¹.

A comparison of these results can be made with recently published data. Indeed, owing to the relevance of these studies with regard to the atmospheric impact, seven separate studies have been performed in various laboratories during the course of this study. The results are summarised in Table 6.

Biggs et al. [14] estimated a value of $k_1 = 1 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ which lies 370 times higher than the value of this work and about 20 times higher than most of the other reported values. Upper limits were obtained for k_1 in three indirect studies: $k_1 \le 1 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ by Nielsen and Sehested [15], $k_1 \le 3 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ by Wallington et al. [16] and $k_1 \le 5 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ by Maricq

Table 6 Comparison of the rate constants k_1 and k_2 with previous investigations

Author	Ref.	k_1 k_2 $(cm^3 molecule^{-1} s^{-1})$		
Biggs et al.	[14]	1×10 ⁻¹²		
Nielsen and Sehested	[15]	$\leq 1 \times 10^{-13}$	$\leq 5 \times 10^{-15}$	
Wallington et al.	[16]	$\leq 3 \times 10^{-14}$		
Maricq and Szente	[17]	$\leq 5 \times 10^{-14}$	$\leq 1 \times 10^{-14}$	
Turnipseed et al.	[18]	$2.5^{+0.7}_{-1.5} \times 10^{-14}$	$\leq 7 \times 10^{-15}$	
Jensen et al.	[19]	$\leq 4 \times 10^{-14}$	$\leq 3 \times 10^{-15}$	
Fockenberg et al.	[20]	$\leq 2 \times 10^{-15}$		
This work		$(2.8\pm1)\times10^{-15}$	$(9\pm3)\times10^{-16}$	

and Szente [17]. Three direct measurements were recently reported. Two values, $k_1 = (2.5^{+0.7}_{-1.5}) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ by Turnipseed et al. [18] and $k_1 \le 4 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ by Jensen et al. [19], are in good agreement with the indirect measurements. Only the rate constant of Fockenberg et al. [20] $k_1 \le 2 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ compares well with k_1 measured here.

Upper limits for k_2 were also obtained by Nielsen and Sehested [15] and by Maricq and Szente [17] to be $k_2 \le 5 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ and $k_2 \le 1 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹, respectively. Turnipseed et al. [18] determined a ratio $k_1/k_2 \ge 5$, which yields an upper limit $k_2 \le 7 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹. Jensen et al. [19] reported $k_2 \le 3 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹.

The values of $k_1 = (2.8 \pm 1) \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ and $k_2 = (9 \pm 3) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹ obtained in this study are the lowest of those cited in Table 6, with the exception of the rate constants k_1 of Fockenberg et al. [20]. The discrepancies between our k_1 and k_2 and previous measurements are too large to be explained simply by using the argument that upper limits are overestimations. We investigated in influence of possible errors, including experimental errors, mechanistic errors and errors of the rate constants we used, on k_1 and k_2 and we found no reasonable explanation for the order of magnitude discrepancy seen here.

5. Conclusions

The fact that $CF_3O_3CF_3$ is only observed in the photolysis of $CF_3O_2CF_3/O_3/O2$ mixtures indicates that CF_3O_2 is definitely a product from the reaction of CF_3O_3 radicals with O_3 . The photolysis of $CF_3O_2CF_3$ at 254 nm can be considered as a CF_3O_2 -free source of CF_3O_3 radicals. This is substantiated by the fact that no $CF_3O_3CF_3$ was formed in the photolysis of $CF_3O_2CF_3/O_2$ in the absence of O_3 .

The atmospheric implications of reaction (1) on ozone destruction have been discussed in recent papers by Nielsen and Sehested [15], Wallington et al. [16], Fock-

enberg et al. [20], Ravishankara et al. [36] and Ko et al. [37], and will not be discussed in detail here. The general concensus from these model considerations is that CF_3O radicals are predominantly removed in the stratosphere by NO and CH_4 and that the ozone depletion potential of CF_3O_x radicals is negligibly small relative to Cl-catalyzed reactions. Our low values act only to confirm the insignificance of CF_3O -initiated ozone depletion.

Acknowledgement

We thank Dr. Ravishankara and Dr. Jensen from the NOAA laboratories in Boulder, CO, for providing preprints of their studies on the $CF_3O + O_3$ reaction. Valuable discussions with Dr. Howard Sidebottom are acknowledged. Finally, we thank the CEC for the support given within the STEP programme.

References

- Scientific Assessment of Stratospheric Ozone, WMO Report No. 20, Vol. 2, Appendix, AFEAS report, 1989.
- [2] Scientific Assessment of Stratospheric Ozone, WMO Report No. 25, 1991.
- [3] J. Franklin, Chemosphere, 27 (1993) 1565.
- [4] J. Chen, T. Zhu and H. Niki, J. Phys. Chem., 96 (1992) 6115.
- [5] J. Chen, T. Zhu, H. Niki and G.J. Mains, Geophys. Res. Lett., 19 (1992) 2215.
- [6] T.J. Bevilacqua, D.R. Hanson and C.J. Howard, J. Phys. Chem., 97 (1993) 3750.
- [7] S.B. Barone, A.A. Turnipseed and A.R. Ravishankara, J. Phys. Chem., 98 (1994) 4602.
- [8] J. Chen, T. Zhu, V. Young and H. Niki, J. Phys. Chem., 97 (1993) 7174.
- [9] J. Chen, T. Zhu, V. Young and H. Niki, J. Phys. Chem., 97 (1993) 11696.
- [10] H. Saathoff and R. Zeilner, Chem. Phys. Lett., 206 (1993) 349.
- [11] C. Kelly, J. Treacy and H.W. Sidebottom, Chem. Phys. Lett., 207 (1993) 498.
- [12] C. Kelly, H.W. Sidebottom, J. Treacy and O.J. Nielsen, *Chem. Phys. Lett.*, 218 (1994) 29.
- [13] T.J. Wallington, M. D. Hurley, W.F. Schneider, J. Sehested and O.J. Nielsen, J. Phys. Chem., 97 (1993) 7606.
- [14] P. Biggs, C.E. Canosa-Mas, D.E. Shallcross, R.P. Wayne, C. Kelly and H.W. Sidebottom in *Proceedings STEP Halocside/* AFEAS Workshop, Dublin, 1993.
- [15] O.J. Nielsen and J. Sehested, Chem. Phys. Lett., 213 (1993) 433.
- [16] T.J. Wallington, M. D. Hurley and W.F. Schneider, Chem. Phys. Lett., 213 (1993) 442.
- [17] M.M. Maricq and J.J. Szente, Chem. Phys. Lett., 213 (1993) 449.
- [18] A.A. Turnipseed, S.B. Barone and A.R. Ravishankara, J. Phys. Chem., 98 (1994) 4594.
- [19] N.R. Jensen, D.R. Hansen and C.J. Howard, J. Phys. Chem., in press
- [20] C. Fockenberg, H. Saathoff and R. Zellner, Chem. Phys. Lett., 218 (1994) 21.

- 21] A. Nölle, H. Heydtmann, R. Meller and G.K. Moortgat, Geophys. Res. Lett., 20 (1993) 707.
- [22] D. Maric, J.P. Borrows, R. Meller and G.K. Moortgat, J. Photochem. Photobiol. A: Chem., 70 (1993) 205.
- [23] W.H. Raber and G.K. Moortgat, in Advances in Physical Chemistry, Current Problems and Progress in Atmospheric Chemistry, World Scientific Publishing, in press.
- [24] L.R. Anderson and W.B. Fox, J. Am. Chem. Soc., 89 (1967) 4313.
- [25] J. Sehested and T. Wallington, Environ. Sci. Technol., 27 (1993) 146.
- [26] J.S. Francisco, Chem. Phys. Lett., 218 (1994) 401.
- [27] R. Meller, D. Boglu and G.K. Moortgat, in Proceedings STEP Halocside/AFEAS Workshop, Dublin, 1991.
- [28] J. Czarnowski and H.J. Schumacher, Int. J. Chem. Kinetics, 13 (1981) 639.

- [29] O.J. Nielsen, T. Ellermann, J. Schested, E. Bartkiewicz, T.J. Wallington and M.D. Hurley, Int. J. Chem. Kinetics, 24 (1992) 1009.
- [30] T.J. Wallington, J. Sehested, M.A. Dearth and M.D. Hurley, J. Photochem. Photobiol. A: Chem., 70 (1993) 5.
- [31] L. Batt and R. Walsh, Int. J. Chem. Kinetics, 14 (1982) 933.
- [32] R.C. Kennedy and J.B. Levy, J. Phys. Chem., 76 (1972) 3480.
- [33] M.M. Maricq and J.J. Szente, J. Phys. Chem., 96 (1992) 4925.
- [34] J.M. Tedder and J.C. Walton, *Prog. Reaction Kinetics*, 4 (1967) 39.
- [35] E. Whittle, M.T.P. International Review of Science, Phys. Chem. Series, Vol. 9, Butterworth, London, 1972, p. 76.
- [36] A.R. Ravishankara, A. A. Turnipseed, N.R. Jensen, S. Barone, M. Mills, C.J. Howard and S. Salomon, *Science*, 263 (1994) 71.
- [37] M.K.W. Ko, N.-D. Sze, J.M. Rodriguez. D.K. Weisenstein, C.W. Heisey, R.P. Wayne, P. Biggs, C.E. Canosa-Mas, H.W. Sidebotom and J. Treacy, *Geophys. Res. Lett.*, 21 (1994) 101.